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I characterize good clocks, which are naturally subject to fluctuations, in statistical terms,
obtain the master equation that governs the evolution of quantum systems according
to these clocks, and find its general solution. This master equation is diffusive and
produces loss of coherence. Moreover, real clocks can be described in terms of effective
interactions that are nonlocal in time. Alternatively, they can be modeled by an effective
thermal bath coupled to the system. I also study some aspects concerning the evolution
of quantum low-energy fields in a foamlike spacetime, with involved topology at the
Planck scale but with a smooth metric structure at large length scales. This foamlike
structure of spacetime may show up in low-energy physics through loss of quantum
coherence and mode-dependent energy shifts, for instance, which might be observable.
Spacetime foam introduces nonlocal interactions that can be modeled by a quantum bath,
and low-energy fields evolve according to a master equation that displays such effects.
These evolution laws are similar to those for quantum mechanical systems evolving
according to good nonideal clocks, although the underlying Hamiltonian structure in
this case establishes some differences among both scenarios.

KEY WORDS: spacetime foam; quantum spacetime; fluctuations; imperfect clocks
in quantum mechanics.

1. INTRODUCTION

Any real clock is inevitably subject to quantum fluctuations, which introduce
uncertainties in the equations of motion. For instance, it has been shown that
the finite mass and size of the clock impose limitations in the measurement of
spacetime distances in the framework of general relativity (Salecker and Wigner,
1958; Wigner, 1957). Some considerations have also been made on the role of
quantum clocks in the context of quantum cosmology (Hartle, 1998; Unruh and
Wald, 1989). Simple models for quantum clocks have been proposed, and the
quantum evolution of a system according to a quantum clock suitably coupled
with it has also been studied (Aharanovet al., 1998; Hartle, 1988; Page and
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Wootters, 1983; Peres, 1980; Salecker and Wigner, 1958; Unruh and Wald, 1989;
Wigner, 1957). The general conclusion is that the system becomes more and more
perturbed as the resolution of the clock is improved. Even more, quantum gravity
may well imply the existence of an absolute limit, the Planck scale, to the accuracy
of spacetime–distance measurements and, in particular, to clock synchronization
(for a review, see, e.g., Ref. Garay, 1995), with possible effects in the low-energy
regime (Amelino-Cameliaet al., 1998; Elliset al., 1984; Garay, 1998a,b; Hawking,
1982), as discussed below.

It follows that any quantum clock that we could possibly build would lead to
uncertainties and errors. These quantum errors, however, are not the only source
of randomness in the measure of time. Real clocks are also subject to classical im-
perfections, small errors, that can only be dealt with statistically. For instance, an
unavoidable classical source of stochasticity is temperature, which will introduce
thermal fluctuations in the behavior of real clocks. Although this is not necessarily
the most important source of errors in modern day atomic clocks, it is nonetheless
always present to some extent. In other words, the third law of thermodynam-
ics forbids the existence of ideal clocks. Even at zero-temperature, the quantum
vacuum fluctuations of quantum field theory make propagating physical systems
(real clocks among them) suffer a cold diffusion and consequently a need for a
stochastic description of their evolution (Gour and Sriramkumar, 1999). We are
then bound to use real physical clocks and rely on their readouts when measuring
the evolution of a quantum system.

The stochastic nature of nonideal clocks, naturally leads to the conclusion
that the evolution according to the readouts of a real clock is nonunitary. In other
words, the use of real clocks induces loss of coherence in most physical quantum
states, as we will explicitly show. A similar although more complicated situation
appears within the context of quantum gravity: low-energy fields may lose coher-
ence because of the unavoidable quantum fluctuations of spacetime. Let us briefly
review how this may occur.

A quantum uncertainty in the position of a particle implies an uncertainty
in its momentum and, therefore, due to the gravity–energy universal interaction,
would also imply an uncertainty in the geometry, which in turn would introduce
an additional uncertainty in position of the particle. The geometry would thus
be subject to quantum fluctuations that would constitute the spacetime foam and
that should be of the same order as the geometry itself at the Planck scale. This
would give rise to a minimum length (Garay, 1995) beyond which the geometrical
properties of spacetime would be lost, while on larger scales it would look smooth
and with a well-defined metric structure. The key ingredients for the appearance of
this minimum length are quantum mechanics, special relativity, which is essential
for the unification of all kinds of energy via the finiteness of the speed of light, and
a theory of gravity, i.e., a theory that accounts for the active response of spacetime
to the presence of energy. Thus, the existence of a lower bound to any output
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of a position measurement seems to be a model-independent feature of quantum
gravity (Garay, 1995).

More than a century ago, Riemann (1873) already noticed that “Now it seems
that the empirical notions on which the metrical determinations of space are
founded, the notion of a solid body and of a ray of light, cease to be valid for
the infinitely small. We are therefore quite at liberty to suppose that the metric
relations of space in the infinitely small do not conform to the hypotheses of ge-
ometry; and we ought in fact to suppose it, if we can thereby obtain a simpler
explanation of phenomena.” In the middle of this century, Weyl (1949) took these
ideas a bit further and envisaged topological structures of ever-increasing com-
plexity as possible constituents of the physical description of surfaces. Few years
later, Wheeler (1957) described this topological complexity of spacetime at small
length scales as the foam-like structure of spacetime. According to Wheeler, at
the Planck scale, the fluctuations of the geometry are so large and involve so large
energy densities that gravitational collapse should be continuously being done and
undone at that scale. Because of this perpetuity and ubiquity of Planck scale grav-
itational collapse, it should dominate Planck scale physics. In this continuously
changing scenario, it seems natural to accept that the topology of spacetime is
also subject to quantum fluctuations. Furthermore, from the functional integration
point of view, in quantum gravity all histories contribute and, among them, there
seems unnatural not to consider nontrivial topologies as one considers nontrivial
geometries (Misner, 1960; Wheeler, 1957) (see, however, Ref. DeWitt, 1984).

The quantum structure of spacetime would be relevant at energies close to
Planck scale and one could expect that the quantum gravitational virtual processes
that constitute the spacetime foam could not be described without knowing the
details of the theory of quantum gravity. However, the gravitational nature of
spacetime fluctuations provides a mechanism for studying the effects of these
virtual processes in the low-energy physics. Indeed, virtual gravitational collapse
and topology change would forbid a proper definition of time at the Planck scale.
In general, these spacetime fluctuations, in which the asymptotically time-like
Hamiltonian vector fields vanish, are associated with infinite redshift surfaces
and, consequently, these small spacetime regions would behave as magnifiers
of Planck length scales transforming them into low-energy modes as seen from
outside the fluctuations (Padmanabhan, 1999). Therefore, spacetime foam and the
related lower bound to spacetime uncertainties would leave their imprint, which
may be not too small, in low-energy physics (see, e.g., Garay, 1999 and references
therein). Also, low-energy experiments would effectively suffer a nonvanishing
uncertainty coming from this lack of resolution in spacetime measurements. In
this situation, loss of quantum coherence would be almost unavoidable (Hawking,
1982; Hawkinget al., 1979, 1980). This conclusion was based in part on the
thermal character of the emission predicted for evaporating black holes (Hawking,
1976). If loss of coherence occurs in macroscopic black holes, it seems reasonable
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to conclude that the small black holes that are continuously being created and
annihilated everywhere within spacetime foam will also induce loss of quantum
coherence (Hawking, 1976, 1982). Here, I will describe a physical low-energy
effective model (Garay, 1998a,b, 1999) that realizes this conjecture. Furthermore,
related to this issue, spacetime foam might produce frequency-dependent energy
shifts (Garay, 1998a,b, 1999) that would slightly alter the dispersion relations for
the different low-energy fields.

Throughout this paper, I will seth = c = 1, so that the only dimensionfull
constant will be Planck’s length̀∗ =

√
G, G being Newton’s constant.

2. NONIDEAL CLOCKS

In this section, we will study, within the context of the standard quantum
theory, the evolution of an arbitrary system according to a real nonideal clock
(Egusquizaet al., 1999), i.e., we will be concerned with the readings of time that
it provides. As stated before, these readings will undergo errors, which will be
described by a stochastic process. In what follows we shall not delve further into
the source of stochasticity, but assume a phenomenological description of it.

Let us imagine a large ensemble of identical systems, prepare one of them
in a given initial state at initial clock timet = 0, and then measure the state of
that system at clock timet . If we repeat this procedure for all the systems in the
ensemble, the result will be a probability distribution for the possible outcomes, its
dispersion partially being a consequence of the lack of knowledge of the precise
ideal time that has elapsed.

A real clock will be a system with a degree of freedomt that closely follows the
ideal time parameterti , i.e.,ti = t +1(t), where1(t) is the error at the real clock
time t . Given any real clock, its characteristics will be encoded in the probability
functional distribution for the continuous stochastic processes1(t) (Gardiner,
1985; Van Kampen, 1981) of clock errors,P[1(t)], which must satisfy appropriate
conditions, so that it can be regarded as a good clock.

2.1. Good Clock Conditions

A first property is that Galilean causality should be preserved, i.e., that
causally related events should always be properly ordered in clock time as well,
which implies thatti (t ′) > t i (t) for everyt ′ > t . In terms of the derivativeα(t) =
d1(t)/dt of the stochastic process1(t), we can state this condition as requiring
that, for any realization of the stochastic sequence,α(t) > −1.

A second condition that we would require good clocks to fulfill is that the
expectation value of relative errors (per unit real time), determined by the stochastic
processα(t), be zero, i.e.,〈α(t)〉 = 0 for all t . If this were not the case, the clock
would either systematically go fast or slow down, and a redefinition through this
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systematic drift would provide us with a well-centered clock. Consequently, the
expectation value for the absolute errors1(t) will be constant. Furthermore, since
t = 0 will be the time at which the systems whose evolution we are studying are
prepared,1(0) will not be stochastic and, without loss of generality, will be set to
zero by a simple translation of the origin of time, so that〈1(t)〉 = 0.

Furthermore, a good clock should always behave in the same way (in a statis-
tical sense). We can say that the clock behaves consistently in time as a good one if
those relative errorsα(t) are statistically stationary, i.e., the probability functional
distributionP[α(t)] for the process of relative errorsα(t) (which can be obtained
from P[1(t)], and vice versa) must not be affected by global shiftst → t + t0
of the readout of the clock. Note that the stochastic process1(t) need not be
stationary, despite the stationarity of the processα(t).

The one-point probability distribution function for the variablesα(t) should
be highly concentrated around the zero mean, if the clock is to behave nicely. Even
more, it is to be expected for clocks with small errors that all the higher-order
cumulants be much smaller than the correlation, which, in turn, should also be
bounded by a small number, i.e.,

〈α(t)α(t − τ )〉 ≡ c(τ ) ≤ c(0)¿ 1,

wherec(τ ) = c(−τ ). The correlation for the sequence of absolute errors1(t) can
then be easily obtained and has the form

〈1(t)1(t ′)〉 =
∫ t

0
dt1

∫ t ′

0
dt2 c(t1− t2).

The correlation timeϑ for the stochastic processα(t) is given by

ϑ =
∫ ∞

0

c(τ )

c(0)
.

We will introduce a new parameterκ with dimensions of time, defined asκ2 =
c(0)ϑ2. This comes about because, when the errors of the clock have a thermal
origin, κ2 is proportional to the temperature, and independent ofϑ . In general,
the good clock conditions implyκ ¿ ϑ . As we shall see,ϑ cannot be arbitrarily
large, and, therefore, the ideal clock limit is given byκ → 0.

Until now we have discussed general properties that a good clock must fulfill,
regardless of the physical system under study. In addition to these properties,
a good clock must have enough precision in order to measure the evolution of
the specific system, which imposes further restrictions on the clock. On the one
hand, the characteristic evolution timeζ of the system must be much larger than
the correlation timeϑ of the clock. On the other hand, the leading term in the
asymptotic expansion of the variance〈1(t)2〉 for larget is of the formκ2(kε/ϑ),
which means that, after a certain period of time, the absolute errors can be too
large. The maximum admissible standard deviation in1(t) must be at most of
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the same order asζ . Then the period of applicability of the clock to the system
under study, i.e., the period of clock time during which the errors of the clock are
smaller than the characteristic evolution time of the system is approximately equal
to ζ 2ϑ/κ2. For a good clock,κ ¿ ϑ ¿ ζ , as we have seen, so that the period of
applicability is much larger than the characteristic evolution timeζ .

2.2. Evolution Laws

We shall now obtain the evolution equation for the density matrix of an
arbitrary quantum system in terms of the clock timet .

Let H be the time-independent Hamiltonian of the system so that, in terms
of the ideal timeti , its action has the form

S=
∫

dti

[
p

dq

dti
− H

]
.

For any given realization of the stochastic processα(t) that characterizes a good
clock, the relation between the ideal timeti and the real timet is given byti =
t + ∫ t

0 dt′α(t ′). Thus, a straightforward change of the time integration variable
yields the actionSα for each realizationα(t):

Sα =
∫

dt{pq̇ − [1+ α(t)]H} = S−
∫

dt α(t)H,

where the overdot denotes derivative with respect to the real timet . The density
matrix ρα(t) for an arbitrary quantum system and for a given realization of the
stochastic processα(t), can be obtained from the initial density matrixρ(0) by
means of a linear operator called the superscattering operator $α(t):

ρα(t) = $α(t) · ρ(0), (1)

where the superscattering operator has the form

$α(t) =
∫
DQDQ′ei Sα [Q;t ]−i Sα [Q′;t ] ,

with Q ≡ (q, p).
The average of the density matrixρα(t) can be regarded as the density matrix

of the systemρ(t) at the clock timet . Since the initial density matrix is independent
of α, its evolution is determined by the superscattering operator $

$(t) =
∫
DαP[α]$α(t), ρ(t) = $(t) · ρ(0). (2)

Under the good clock approximationκ ¿ ϑ , only the two-point correlation
function c(τ ) is relevant, so that we can approximateP[α(t)] by a stationary
Gaussian probability functional with zero mean and correlation given by the
correlationc(τ ) of P[α(t)]. Although this Gaussian approximation assigns a
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nonvanishing probability toα(t) < −1, this probability will be negligibly small
since, for good clocks,c(t)¿ 1. Thus the Gaussian approximation to good clocks
fulfills the Galilean causality condition for all practical purposes. The integration
overα(t) is then easily performed to obtain the influence actionW

W[Q, Q′; t ] = −1

2

∫ t

0
ds
∫ s

0
ds′{H [Q(s)] − H [Q′(s)]}c(s− s′){H [Q(s′)]

−H [Q′(s′)]},

in terms of which the superscattering operator has the form

$(t) =
∫
DQDQ′ ei S[Q;t ]−i S[Q′;t ] eW [Q,Q′;t ] ,

This superscattering operator corresponds to the evolution of a system with a
free HamiltonianH coupled with a classical noise sourceα(t), with a probability
functional distributionP[α(t)], via the interaction Hamiltonianα(t)H . We see
that there is no dissipative term there as could be expected from the fact that the
noise source is classical (Feynman and Hibbs, 1965; Feynman and Vernon, 1963).
Moreover, as the interaction term is proportional toH , there is no response of the
system to the outside noise, which means that the associated impedance is infinite
(Callen and Welton, 1951; Gardiner, 1991; Mandel and Wolf, 1995).

Therefore, we see that the effect of using good real clocks for studying the
evolution of a quantum system is the appearance of an effective interaction term
in the action integral which is bilocal in time. This can be understood as the first
term in a multilocal expansion, which corresponds to the weak-field expansion
of the probability functional around the Gaussian term. This nonlocality in time
admits a simple interpretation: correlations between relative errors at different
instants of clock-time can be understood as correlations between clock-time flows
at those clock instants. The clock-time flow of the system is governed by the
Hamiltonian and, therefore, the correlation of relative errors induces an effective
interaction term, generically multilocal, that relates the Hamiltonians at different
clock instants.

From the form of the influence action or equivalently from Eq. (2), it is not
difficult to see that, in the Markov approximation and provided that the system
evolves for a time smaller than the period of applicability of the clock, the density
matrixρ(t) satisfies a master equation that contains a diffusion term. Indeed, the
differential version of the scattering equation (2) can be found by differentiating
such equation with respect to clock-time. In order to do that we will first analyze
the corresponding differential equation forρα(t), and then we will average over
all possible realizations of the stochastic processα as required in Eq. (2). The
differential equation satisfied byρα(t) can be obtained by differentiating Eq. (1)
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with respect to clock timet :

ρ̇α(t) = −i (1+ α(t))[H, ρα(t)].

Let us now transform to the interaction picture in which the density matrix has the
form

ρ I
α(t) = ei Htρα(t) e−i Ht .

Notice that the interaction termα(t)H has the same form in both pictures because
it is proportional to the free HamiltonianH . Integrating the resulting equation
between 0 andt , and reintroducing the result forρ I

α, we obtain the following
integro-differential equation:

ρ̇ I
α(t) = −iα(t)

[
H, ρ I

α(0)
]− ∫ t

0
dt′α(t)α(t ′)

[
H,
[
H, ρ I

α(t ′)
]]
.

In order to find the evolution equation in the clock-timet , we have to average
this equation over all possible realizationsα(t) of the stochastic process with the
functional weightP[α(t)]. The average of the density matrixρ I

α(t) will be denoted
byρ I (t) and can be regarded as the interaction-picture density matrix of the system
at clock-timet .

At the real timet = 0, we impose the initial conditionρ I (0)= ρ I
α(0)= ρ(0).

Additionally, for a good clock,〈α(t)〉 = 0, as already discussed, and, as a conse-
quence, the average of the linear term inα(t) vanishes. Furthermore, the clock-time
derivative∂t and the average overα(t ′) commute becauseP[α(t ′)] is stationary.
Finally, the density matrixρ I

α(t ′) can be expanded in powers ofα(t ′). Then the
average of the integro-differential equation for the density matrixρ I yields

ρ̇ I (t) = −
∫ t

0
dτ c(τ )

[
H,
[
H, ρ I (t − τ )

]]+ O(〈α3〉),

where we have performed a change of the integration variable fromt ′ to τ = t − t ′

and have introduced the correlation functionc(τ ) for the stochastic processα(t).
For a good clock, the higher-order terms inα can be seen to be much smaller

than thec(τ ) term by a factor (κ/ζ )2¿ 1, provided that the system evolves for a
time smaller than the period of applicability of the clock. Sinceζ À ϑ , the sys-
tem does not evolve significantly within a correlation time, and we can substitute
ρ I (t − τ ) by ρ I (t). This is the so-called Markov approximation. The process1(t)
will not be Markovian in general and there is no reason for requiring that the
processα(t) has this property either. However, and even though the Markov ap-
proximation refers to the system and not to the clock itself, it renders the possible
non-Markovian character of the clock irrelevant. Furthermore, for evolution times
t much larger than the correlation timeϑ , we can take the upper integration limit to
infinity.
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The resulting master equation, once we go back to the Schr¨odinger picture,
can be written as

ρ̇(t) = −i
[
H, ρ(t)

]− (κ2/ϑ)
[
H,
[
H, ρ(t)

]]
.

Notice that the accuracy of the clock appears in the master equation through
the parametersκ andϑ and that, in the ideal clock limit,κ → 0, the unitary von
Neumann equation is recovered. We should also point out that this master equation
is not a truncation of the BBGKY hierarchy (Huang, 1987), and that irreversibility
appears because the errors of the clock cannot be eliminated once we have started
using it.

In the Gaussian approximation, there is essentially only one good clock for
which α(t) is Markovian, the Ornstein-Uhlenbeck process (Gardiner, 1985; Van
Kampen, 1981). In this case, the correlation function forα(t) in the stationary
regime isc(τ ) = (κ/ϑ)2e−|τ |/ϑ . Since the possible non-Markovian character of
the clock does not influence the time evolution of the system (provided that the
conditionζ ¿ ϑ is satisfied, as happens for good clocks), the Ornstein-Uhlenbeck
clock is generic in what concerns the evolution of quantum systems according to
real clocks.

2.3. Effective Thermal Bath

A real clock can be effectively modeled by a thermal bath, with a temperature
Tb to be determined, coupled to the system.

Let H + Hint + Hb be the total Hamiltonian, whereH is the free Hamiltonian
of the system andHb is the Hamiltonian of a bath that will be represented by a
collection of harmonic oscillators (Gardiner, 1991; Mandel and Wolf, 1995). The
interaction Hamiltonian will be of the formHint = ξH , where the noise operator
ξ is given by

ξ (t) = i√
2π

∫ ∞
0

dωχ (ω)[a†(ω) eiωt − a(ω) e−iωt ].

In this expression,a anda† are, respectively, the annihilation and creation oper-
ators associated with the bath, andχ (ω) is a real function, to be determined, that
represents the coupling between the system and the bath for each frequencyω.

Identifying, in the classical noise limit, the classical correlation function of
the bath withc(τ ), the suitable coupling between the system and the bath is given
by the spectral density of fluctuations of the clock:

Tbχ (ω)2 =
∫ ∞

0
dτ c(τ ) cos(ωτ ).

With this choice, the master equation for evolution according to real clocks is identi-
cal to the master equation for the system obtained by tracing over the effective bath.
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To go beyond the classical noise limit requires the introduction of the usual
quadratic dissipation term in the influence functional (Feynman and Hibbs, 1965;
Feynman and Vernon, 1963). However, the peculiar coupling to the energyξH ,
which is quite different from the usual coupling to the position or the momentum
of the system, implies that this term does not produce dissipation in the equations
of motion: the fluctuation–dissipation theorem, which reflects the microscopic
structure of the bath, is thus fulfilled, but there is no dissipation.

2.4. Decoherence

The master equation contains a diffusion term and will, therefore, lead to a
loss of coherence (Giuliniet al., 1996). However, this loss depends on the initial
state. In other words, there exists a pointer basis (Zurek, 1981, 1982), so that
any density matrix that is diagonal in this specific basis will not be affected by
the diffusion term, while any other will approach a diagonal density matrix. The
stochastic perturbationα(t)H is obviously diagonal in the basis of eigenstates
{|n〉} of the Hamiltonian, which is, therefore, the pointer basis: the interaction
term cannot induce any transition between different energy levelsωn.

The components of the density matrix in this basis areρnm = 〈n|ρ|m〉. The
master equation can be solved exactly, its general solution being

ρnm(t) = ρnm(0)e−iωnmt e−(ωnm)2κ2t/ϑ ,

whereωnm = ωn − ωm. The smallest energy differenceω provides the inverse
of the characteristic time for the evolution of the system,ζ = 1/ω. The smallest
decay constant isω2κ2/ϑ , equal to the inverse of the period of applicability of the
clock. By the end of this period, the density matrix will have been reduced to the
diagonal terms and a much diminished remnant of those off-diagonal terms with
slow evolution. In any case, the von Neumann entropy grows if the density matrix
is not initially diagonal in the energy basis.

The effect of decoherence due to errors of real clocks does not only turn up
in the quantum context. Consider, for instance, a classical particle with a definite
energyE moving under a time-independent HamiltonianH . Because of the errors
of the clock, we cannot be positive about the location of the particle in its trajectory
on phase space at our clock timet . Therefore, we have an increasing spread in
the coordinate and conjugate momentum over the trajectory. For a generic system,
this effect is codified in the classical master equation,

ρ̇ = {H, ρ
}+ (κ2/ϑ)

{
H,
{
H, ρ

}}
,

where, here,ρ(t) is the probability distribution on phase space in clock time. This
classical master equation can be derived in a manner completely analogous to the
quantum one.
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For simplicity, let us study the particular example of a one-dimensional
Hamiltonian motion with closed orbits, withH = ωJ, ϕ being the angle vari-
able with period 2π conjugate to the action variableJ, andω a constant frequency
characteristic of the system. The classical master equation for the probability den-
sity ρ(ϕ, J; t) reads

ρ̇ = ω∂ϕρ + (ω2κ2/ϑ)∂2
ϕρ.

This diffusion equation can be exactly solved by separation of variables. The
slowest decaying mode has, as before, a decay constantω2κ2/ϑ .

In the case of one particle that is released with energyE and initial angleϕ0, the
probability distribution spreads out over the corresponding connected component
of the energy shell, and tends toδ(J − E/ω)/2π as clock time grows. As we can
see, the information about theϕ variable is washed out by the errors in our clock,
which is precisely the information that is not available in the quantum case: ifJ
is completely known for a given quantum state, the indeterminacy in its conjugate
variable will be infinite, the situation towards which the classical decoherence
process tends.

Finally, it should be observed that the mechanism of decoherence is neither
tracing over degrees of freedom, nor coarse graining, nor dephasing (Cooperet al.,
1997; Giuliniet al., 1996). Even though there is no integration over time introduced
here by fiat, as happens in dephasing in quantum mechanics, the spread in time
due to the errors of the clock has a similar effect, and produces decoherence.

3. SPACETIME FOAM

In the previous section, we have analyzed the evolution of physical systems
when measured by real clocks, which are generally subject to errors and fluctu-
ations, in contrast with ideal clocks that, although would accurately measure the
time parameter that appears in the Schr¨odinger equation, do not exist in nature.

On the other hand, spacetime foam contains highly nontrivial topological or
causal configurations, which will introduce additional features in the description of
the evolution of low-energy fields as compared with topologically trivial, globally
hyperbolic manifolds. The similarity with quantum systems evolving according to
a nonideal clock as described above is striking. Actually, despite the different con-
ceptual and physical origin of the fluctuations, we will see that the effects of these
two systems are indeed similar, although there also exist important differences.

In order to build an effective theory that accounts for the propagation of low-
energy fields in a foam-like spacetime, we will substitute the spacetime foam, in
which we possibly have a minimum length because the notion of distance is not
valid at such scale, by a fixed background with low-energy fields living on it. We
will perform a 3+1 foliation of the effective spacetime that, for simplicity, will be
regarded as flat,t denoting the time parameter andx the spatial coordinates. The
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gravitational fluctuations and the minimum length present in the original spacetime
foam will be modeled by means of nonlocal interactions that relate spacetime
points that are sufficiently close in the effective background, where a well-defined
notion of distance exists (Garay, 1998a,b, 1999) (for related ideas and a review on
stochastic gravity see Ref. Hu, 1999). Furthermore, these nonlocal interactions will
be described in terms of local interactions as follows. Let{hi [φ; t ]} be a basis of
local gauge–invariant interactions at the spacetime point (x, t) made out of factors
of the form`2n(1+s)−4

∗ [φ(x, t)]2n,φ being the low-energy field strength of spins. As
a notational convention, each indexi implies a dependence on the spatial position
x by default; whenever the indexi does not carry an implicit spatial dependence,
it will appear underlinedi . Also, any contraction of indices (except for underlined
ones) will entail an integral over spatial positions.

3.1. Influence Functional

The low-energy densityρ[φ, ϕ; t ] at the timet in the field representation can
be generally related to the density matrix att = 0

ρ[φ, ϕ; t ] =
∫

Dφ′ Dϕ′$[φ, ϕ; t | φ′, ϕ′; 0]ρ[φ′, ϕ′; 0],

which we will write in the compact formρ(t) = $(t) · ρ(0). Here $(t) is the prop-
agator for the density matrix andDφ ≡∏x φ(x, t). This propagator has the form

$[φ, ϕ; t | φ′, ϕ′; 0] =
∫
DφDϕ ei S0[φ;t ]−i S0[ϕ;t ] eW [φ,ϕ;t ] ,

where expW[φ, ϕ; t ] is the influence functional (Feynman and Hibbs, 1965;
Feynman and Vernon, 1963),Dφ ≡∏x,s φ(x, s) and these path integrals are per-
formed over pathsφ(s), ϕ(s) such that at the end points match the valuesφ, ϕ at
t andφ′, ϕ′ ats= 0. The influence actionW[φ, ϕ; t ] contains all the information
about the interaction of the low-energy fields with spacetime foam. If the influence
actionW[φ, ϕ; t ] were equal to the zero, then we would have unitary evolution
provided by a factorized superscattering matrix. However,W does not vanish
in the presence of gravitational fluctuations and, in fact, the nonlocal effective
interactions will be modeled by terms inW that follow the pattern∫

dt1 . . .dtNυ
i1...i N (t1 . . . tN)hi1[φ; t1] . . . hi N [φ; tN ].

Here,υ i1···i N (t1 . . . tN) are dimensionless complex functions that vanish for relative
spacetime distances larger than the length scaler of the gravitational fluctuations.
If the gravitational fluctuations are smooth in the sense that they only involve
trivial topologies or contain no horizons, the coefficientsυ i1···i N (t1 . . . tN) will be
N-point propagators that, as such, will have infinitely long tails and the size of
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the gravitational fluctuations will be effectively infinite. In other words, we would
be dealing with a local theory written in a nonstandard way. The gravitational
origin of these fluctuations eliminate these long tails because of the presence of
gravitational collapse and topology change.

The coefficientsυ i1...i N (t1 . . . tN) can depend only on relative positions and not
on the location of the gravitational fluctuation itself. The physical reason for this is
conservation of energy and momentum: the fluctuations do not carry energy, mo-
mentum, or gauge charges. Thus, diffeomorphism invariance is preserved, at least
at low-energy scales. One should not expect that at the Planck scale this invariance
still holds. However, this violation of energy–momentum conservation is safely
kept within Planck scale limits (Unruh and Wald, 1995), where the processes will
no longer be Markovian.

Finally, the coefficientsυ i1...i N (t1 . . . tN) will contain a factor [e−S(r )/2]N , S(r )
being the Euclidean action of the gravitational fluctuation, which is of the order
(r/`∗)2. This is just an expression of the idea that inside large fluctuations, interac-
tions that involve a large number of spacetime points are strongly suppressed. As
the size of the fluctuation decreases, the probability for events in which three or
more spacetime points are correlated increases, in close analogy with the kinetic
theory of gases (see Garay, 1999).

In the weak-coupling approximation, i.e., up to second order in the expansion
parameter, the trilocal and higher effective interactions do not contribute. The
terms corresponding toN = 0, 1 are local and can be absorbed in the bare action.
Consequently, we can write the influence actionW as a bilocal whose most general
form is (Feynman and Hibbs, 1965)

W[φ, ϕ; t ] = −1

2

∫ t

0
ds
∫ s

0
ds′{hi [φ; s] − hi [ϕ; s]}

× {υ i j (s− s′)h j [φ; s′] − υ i j (s− s′)∗h j [ϕ; s′]},

where we have renamedυ i j (s, s′) asυ i j (s− s′), and without loss of generality
we have sets > s′. This complex coefficient is Hermitian in the pair of indicesi j
and depends on the spatial positionsxi andxj only through the relative distance
|xi − xj |. It is of ordere−S(r ) and is concentrated within a spacetime region of
sizer .

Let us now decomposeυ i j (τ ) in terms of its real and imaginary parts as

υ i j (τ ) = ci j (τ )+ i ḟ i j (τ ),

whereci j (τ ) and f i j (τ ) are real and symmetric, and the overdot denotes time
derivative. The imaginary part is antisymmetric in the exchange ofi , τ and j ,−τ
and has been written as a time derivative for convenience, since this choice does
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not involve any restriction. Thef term can then be integrated by parts to obtain

W[φ, ϕ; t ] = −1

2

∫ t

0
ds
∫ s

0
ds′ ci j (s− s′){hi [φ; s] − hi [ϕ; s]}{h j [φ; s′]

− h j [ϕ; s′]}

− i

2

∫ t

0
ds
∫ s

0
ds′ f i j (s− s′){hi [φ; s] − hi [ϕ; s]}{ḣ j [φ; s′]

+ ḣ j [ϕ; s′]}.
In this integration, we have ignored surface terms that contribute, at most, to a
finite renormalization of the bare low-energy Hamiltonian.

The functionsf i j (τ ) andci j (τ ) characterize spacetime foam in our effective
description but, under fairly general assumptions, the characterization can be car-
ried out by a smaller set of independent functions. Indeed, Lorentz invariance and
spatial homogeneity, together with a kind of equity principle by which spacetime
foam produces interactions whose intensity does not depend on the pair of interac-
tionshi itself but on its independent components for each mode, imply thatf i j (τ )
andci j (τ ) must have the form

f i j (τ ) =
∫ ∞

0
dωGi j (ω) cos(ωτ ), (3)

ci j (τ ) =
∫ ∞

0
dω g(ω)Gi j (ω) cos(ωτ ), (4)

where

Gi j (ω) = 8π
sin(ω|xi − xj |)
ω|xi − xj | χ i (ω)χ j (ω),

andg(ω) is a function that, together withχ i (ω), fully characterize spacetime foam
under these assumptions. The functionsχ i (ω) can be interpreted as the spectral
effective couplings between spacetime foam and low-energy fields. Sinceυ i j (τ )
is of ordere−S(r ) and is concentrated in a region of linear sizer , the couplings
χ i (ω) will have dimensions of length, will be of ordere−S(r )/2r , and will induce
a significant interaction for all frequenciesω up to the natural cutoffr−1. On the
other hand, the functiong(ω) has dimensions of inverse length and must be of order
r−1. Actually, this function must be almost flat in the frequency range (0,r−1) to
ensure that all the modes contribute significantly to all bilocal interactions. As we
will see, the functiong(ω) also admits a straightforward interpretation in terms of
the mean occupation number for the mode of frequencyω.

If we restrict to the case in whichf i j (τ ) vanishes, i.e.,υ i j (τ ) = ci j (τ ), then
the influence functional expWc is the characteristic functional of a Gaussian
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probability functional distribution, i.e., it can be written as

expWc[φ, ϕ; t ] =
∫
Dα e−

1
2

∫ t
0 ds

∫ s
0 ds′ γi j (s−s′)αi (s)α j (s′) ei

∫ t
0 dsαi (s){hi [φ;s]−hi [ϕ;s]}.

Here, the continuous matrixγi j (s− s′) is the inverse ofci j (s− s′), i.e.,∫
ds′′ γik(s− s′′)ckj (s′′ − s′) = δ j

i δ(s− s′).

Then, in this case, the propagator $(t) has the form

$(t) =
∫
Dα P[α]$α(t),

where $α(t) is just a factorizable propagator associated with unitary evolution
governed by the actionS0+

∫
αi hi and

P[α] = e−
1
2

∫ t
0 ds

∫ s
0 ds′ γi j (s−s′)αi (s)α j (s′).

Therefore, $(t) is just the average with Gaussian weightP[α] of the unitary prop-
agator $α(t).

Note that the quadratic character of the distribution for the fieldsαi is a
consequence of the weak-coupling approximation, which keeps only the bilocal
term in the action. Higher-order terms would introduce deviations from this noise
distribution. The nonunitary nature of the bilocal interaction has been encoded
inside the fieldsαi , so that, when insisting on writing the system in terms of
unitary evolution operators, an additional sum over the part of the system that is
unknown naturally appears. Note also that we have a different fieldαi for each
kind of interactionhi . Thus, we have transferred the nonlocality of the low-energy
fieldφ to the set of fieldsαi , which are nontrivially coupled to it and that represent
spacetime foam.

3.2. Semiclassical Diffusion

We can see that the limit of vanishingf i j (τ ), with nonzeroci j (τ ) (and there-
fore realυ i j (τ )), is a kind of semiclassical approximation since, in this limit, one
ignores the quantum nature of the gravitational fluctuations. Indeed, the fieldsαi

represent spacetime foam but, as we have seen, the path integral for the whole
system does not contain any trace of the dynamical character of the fieldsαi . It
just contains a Gaussian probability distribution for them. The path integral above
can then be interpreted as a Gaussian average over the classical noise sourcesαi .
Classicality here means that we can keep the sourcesαi fixed, ignoring the noise
commutation relations, and, at the end of the calculations, we just average over
them.
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The low-energy density matrixρ then satisfies the following master equation
(Garay, 1998a,b, 1999)

ρ̇ = −i
[
H0, ρ

]− ∫ ∞
0

dτ ci j (τ )
[
hi ,
[
hI

j (−τ ), ρ
]]

,

wherehI
j (−τ ) = e−i H0τh j ei H0τ . Sinceei H0τ = 1+ O(τ/ l ), the final form of the

master equation for a low-energy system subject to gravitational fluctuations
treated as a classical environment and at zeroth order inr/ l (the effect of higher
order terms inr/ l will be thoroughly studied together with the quantum effects) is

ρ̇ = −i [H0, ρ] −
∫ ∞

0
dτ ci j (τ )[hi , [h j , ρ]] .

(For similar approaches yielding this type of master equation see also Bankset al.,
1984; Diósi, 1987; Percival, 1995).

The first term gives the low-energy Hamiltonian evolution that would also
be present in the absence of fluctuations. The second term is a diffusion term
that will be responsible for the loss of coherence (and the subsequent increase of
entropy). It is a direct consequence of the foam-like structure of spacetime and
the related existence of a minimum length. Note there is no dissipation term. This
term is usually present in order to preserve the commutation relations under time
evolution. However, we have considered the classical noise limit, i.e., the noise
α has been considered as a classical source and the commutation relations are
automatically preserved. We will see that the dissipation term, apart from being
of quantum origin, isr/ l times smaller than the diffusion term and we have only
considered the zeroth order approximation inr/ l .

The characteristic decoherence timeτd induced by the diffusion term can
be easily calculated. Indeed, the interaction Hamiltonian densityhi is of order
`−4
∗ (`∗/ l )2ni (1+si ) and ci j (τ ) is of ordere−S(r ). Furthermore, the diffusion term

contains one integral over time and two integrals over spatial positions. The in-
tegral over time and the one over relative spatial positions provide a factorr 4,
sinceci j (τ ) is different from zero only in a spacetime region of sizer 4, and the
remaining integral over global spatial positions provides a factorl 3, the typical low-
energy spatial volume. Putting everything together, we see that the diffusion term is
of orderl−1ε2∑

i j (`∗/ l )ηi+η j , with ηi = 2ni (1+ si )− 2 andε = e−S(r )/2(r/`∗)2.
This quantity defines the inverse of the decoherence timeτd. Therefore, the ratio
between the decoherence timeτd and the low-energy length scalel is

τd/ l ∼ ε−2

[∑
i j

(`∗/ l )ηi+η j

]−1

.

Because of the exponential factor inε, only the gravitational fluctuations whose
size is very close to Planck length will give a sufficiently small decoherence time.
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Slightly larger fluctuations will have a very small effect on the unitarity of the
effective theory.

3.3. Effective Quantum Bath

As we have briefly mentioned before, considering that the coefficientsυ i j are
real amounts to ignore the quantum dynamical nature of spacetime foam, paying
attention only to its statistical properties. In what follows, we will study these
quantum effects and show that spacetime foam can be effectively described in
terms of a quantum thermal bath with a nearly Planckian temperature that has a
weak interaction with low-energy fields. As a consequence, other effects, apart
from loss of coherence, such as Lamb and Stark transition-frequency shifts, and
quantum damping, characteristic of systems in a quantum environment (Gardiner,
1991), naturally appear as low-energy predictions of this model (Garay, 1998a,b,
1999).

Let us consider a Hamiltonian of the form

H = H0+ Hint + Hb.

H0 is the bare Hamiltonian that represents the low-energy fields andHb is the
Hamiltonian of a bath that, for simplicity, will be represented by a real massless
scalar field. The interaction Hamiltonian will be of the formHint = ξ i hi , where
the noise operatorsξ i are given by

ξ i (t) = i
∫

dk
√
ωχ i (ω)

[
a†(k) ei (ωt−kx) − a(k) e−i (ωt−kx)

]
,

whereω =
√

k2, and a and a† are, respectively, the annihilation and creation
operators associated with the bath.

The influence functional in this case has the form (Fenyman and Hibbs, 1965)

eW [φ,ϕ;t ] =
∫

Dq′ DQ′ ρb[q′, Q′; 0]
∫
DqDQ ei Sb[q;t ]−i Sb[Q;t ]

× ei Sint[φ,q;t ]−i Sint[ϕ,Q;t ] ,

where these path integrals are performed over pathsq(s) andQ(s) such that at the
initial time match the valuesq′ andQ′ andSb is the action of the bath.

If we assume that the bath is in a stationary, homogeneous, and isotropic state,
this influence functional can be computed to yield an influence actionW of the
form discussed above. Furthermore, for a thermal state with temperatureT ∼ 1/r ,
the functiong(ω) has the form

g(ω) = ω[N(ω)+ 1/2],

whereN(ω) = [exp(ω/T)− 1]−1 is the mean occupation number of the quantum
thermal bath corresponding to the frequencyω. Recall that the functionsGi j (ω)
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and, hence,f i j (τ ) are uniquely determined by the couplingsχ i (ω). In particular,
they are completely independent of the state of the bath or the system. All the
relevant information about the bath is encoded in the functiong(ω).

With this procedure, we see that spacetime foam can be represented by a
quantum bath determined byg(ω) that interacts with the low-energy fields by
means of the couplingsχ i (ω) which characterize spacetime foam, in the sense
that both systems produce the same low-energy effects because they are described
by the same influence actionW.

This model that we have proposed is particularly suited to the study of low-
energy effects produced by simply connected topology fluctuations such as closed
loops of virtual black holes (Hawking, 1996). Virtual black holes will not obey
classical equations of motion but will appear as quantum fluctuations of spacetime
and thus will become part of the spacetime foam as we have discussed. Particles
could fall into these black holes and be reemitted. The scattering amplitudes of
these processes (Hawking, 1996; Hawking and Ross, 1997) could be interpreted as
being produced by nonlocal effective interactions that would take place inside the
fluctuations and the influence functional obtained above could then be interpreted
as providing the evolution of the low-energy density matrix in the presence of a
bath of ubiquitous quantum topological fluctuations of the virtual-black-hole type.

3.4. Master Equation

As we have already mentioned, from the influence functional obtained in the
previous section, we can obtain the master equation satisfied by the low-energy
density matrix, although here we will follow a different procedure: We will derive
the master equation in the canonical formalism from von Neumann equation for
the joint system of the low-energy fields plus the effective quantum bath coupled
to them that accounts for the effects of spacetime foam.

It is easy to see that the functionf i j (τ ) given in Eq. (3) determines the
commutation relations at different times of the noise variables. Indeed, taking into
account the commutation relations for the annihilation and creation operatorsa
anda†, we obtain by direct calculation the relation

[ξ i (t), ξ j (t ′)] = i
d

dt
f i j (t − t ′).

Similarly, the functionci j (τ ) of Eq. (4) determines the average (defined as
the trace over the bath) of the anticommutator of the noise variables,

1

2

〈
[ξ i (t), ξ j (t ′)

]
+
〉 = ci j (t − t ′),

provided that the bath is in a stationary, homogeneous, and isotropic state
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determined byg(ω), i.e.,

〈a(k)〉 = 0, 〈a(k)a(k′)〉 = 0, 〈a†(k)a(k′)〉 = [g(ω)/ω − 1/2]δ(k− k′).

We are now ready to write down the master equation for the low-energy
density matrix. We will describe the whole system (low-energy field and bath) by
a density matrixρT(t). We will assume that, initially, the low energy fields and the
bath are independent, i.e., that at the timet = 0, ρT(0)= ρ(0)⊗ ρb. If the low-
energy fields and the bath do not decouple at any time, an extra renormalization
term should be added to the Hamiltonian. In the interaction picture, the density
matrix has the formρ I

T(t) = U †(t)ρT(t)U (t), with U (t) = e−i H0t e−i Hbt , and obeys
the equation of motion

ρ̇ I
T(t) = −i

[
ξ i (t)hI

i (t), ρ
I
T(t)

]
,

whereξ i (t) = U †(t)ξ i U (t) and hI
i (t) = U †(t)hi U (t). Integrating this evolution

equation and introducing the result back into it, tracing over the variables of
the bath, definingρ I (t) ≡ trb[ρ I

T(t)], and noting that trb[ξ i (t)hI
i (t)ρ

I
T(t0)] = 0, we

obtain

ρ̇ I (t) = −
∫ t

t0

dt′ trb
{[
ξ i (t)hI

i (t),
[
ξ j (t ′)hI

j (t
′), ρ I

T(t ′)
]]}

.

In the weak-coupling approximation, which implies thatξ i hi is much smaller
than H0 and Hb (this is justified since it is of orderε), we assume that the bath
density matrix does not change because of the interaction, so thatρ I

T(t) = ρ I (t)⊗
ρb. The error introduced by this substitution is of orderε and ignoring it in the
master equation amounts to keep terms only up to second order in this parameter.
Since

[
ξ i (t), hI

j (t
′)
] = 0 because

[
ξ i , h j

] = 0, the right-hand side of this equation
can be written in the following way

−
∫ t

0
dt′
{
ci j (t − t ′)

[
hI

i (t),
[
hI

j (t
′), ρ I (t ′)

]]
+ i

2
ḟ i j (t − t ′)

[
hI

i (t),
[
hI

j (t
′), ρ I (t ′)

]
+
]}
.

The Markov approximation allows the substitution ofρ I (t ′) by ρ I (t) in the
master equation because the integral overt ′ will get a significant contribution from
timest ′ that are close tot due to the factorṡf i j (t − t ′) andci j (t − t ′) and because,
in this interval of time, the density matrixρ I will not change significantly. Indeed,
the typical evolution time ofρ I is the low-energy time scalel , which will be much
larger than the time scaler associated with the bath. If we perform a change of the
integration variable fromt ′ to τ = t − t ′, write

ρ I (t ′) = ρ I (t − τ ) = ρ I (t)− τ ρ̇ I (t)+ O(τ 2),
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and introduce this expression in the master equation above, we easily see that the
error introduced by the Markovian approximation is of orderε2, i.e., it amounts
ignore a term of orderε4. The upper integration limitt in both integrals can be
substituted by∞ for evolution timest much larger than the correlation timer ,
because of the factorṡf i j (τ ) andci j (τ ) that vanish forτ > r .

Then, after an integration by parts of thef term, and transforming the resulting
master equation back to the Schr¨odinger picture we obtain

ρ̇ = −i
[
H ′0, ρ

]− i

2

∫ ∞
0

dτ f i j (τ )
[
hi ,
[
ḣI

j (−τ ), ρ
]
+
]− ∫ ∞

0
dτ ci j (τ )

× [hi ,
[
hI

j (−τ ), ρ
]]

,

whereH ′0 = H0− 1
2 f i j (0)hi h j is just the original low-energy Hamiltonian plus

a finite renormalization originated in the integration by parts of thef term. It
can be checked that the low-energy density matrixρ(t) obtained by means of the
influence actionW is indeed a solution of this master equation.

3.5. Low-Energy Effects

Let us now analyze the general master equation, valid up to second order
in ε, that takes into account the quantum nature of the gravitational fluctuations.
These contributions will be fairly small in the low-energy regime, but may provide
interesting information about the higher-energy regimes in whichl may be of the
order of a few Planck lengths and for which the weak-coupling approximation is
still valid. In order to see these contributions explicitly, let us further elaborate
the master equation. In terms of the operatorL0 defined asL0 · A =

[
H0, A

]
acting of any low-energy operatorA, the time-dependent interactionhI

j (−τ ) can be
written as

hI
j (−τ ) = e−i L 0τh j .

The interactionh j can be expanded in eigenoperatorsh±jÄ of the operatorL0, i.e.,

h j =
∫

dµÄ
(
h+jÄ + h−jÄ

)
,

with L0 · h±jÄ = ±Äh±jÄ anddµÄ being an appropriate spectral measure, which
is naturally cut off around the low-energy scalel−1. This expansion always exists
provided that the eigenstates ofH0 form a complete set. Then,hI

j (−τ ) can be
written as

hI
j (−τ ) =

∫
dµÄ(e−iÄτh+jÄ + eiÄτh−jÄ).
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It is also convenient to define the new interaction operators for each low-energy
frequencyÄ

h1
jÄ = h+jÄ − h−jÄ, h2

jÄ = h+jÄ + h−jÄ.

The quantum noise effects are reflected in the master equation through the
term proportional tof i j (τ ) and the term proportional toci j (τ ), both of them inte-
grated overτ ∈ (0,∞). Because of these incomplete integrals, each term provides
two different kinds of contributions whose origin can be traced back to the well-
know formula ∫ ∞

0
dτ eiωτ = πδ(ω)+ P(i /ω),

whereP is the Cauchy principal part (Reed and Simon, 1972).
The master equation can then be written in the following form

ρ̇ = −(i L ′0+ Ldiss+ Ldiff + i L s−l ) · ρ ,

where the meaning of the different terms are explained in what follows.
The first term−i L ′0 · ρ, with L ′0 · ρ = [H ′0, ρ], is responsible for the renor-

malized low-energy Hamiltonian evolution. The renormalization term is of orderε2

as compared with the low-energy HamiltonianH0, whereε2 = ε2∑
i j (`∗/ l )ηi+η j

and, remember,ηi = 2ni (1+ si )− 2 is a parameter specific to each kind of inter-
action termhi .

The dissipation term

Ldiss · ρ = π

4

∫
dµÄ ÄGi j (Ä)

[
hi ,
[
h1

jÄ, ρ
]
+
]

is necessary for the preservation in time of the low-energy commutators in the
presence of quantum noise. As we have seen, it is proportional to the commutator
between the noise creation and annihilation operators and, therefore, vanishes in
the classical noise limit. Its size is of orderε2r/ l 2.

The diffusion process is governed by

Ldiff · ρ = π

2

∫
dµÄ g(Ä)Gi j (Ä)

[
hi ,
[
h2

jÄ, ρ
]]

,

which is of orderε2/ l .
The next term provides an energy shift that can be interpreted as a mixture of

a gravitational ac Stark effect and a Lamb shift by comparison with its quantum
optics analog (Gardiner, 1991). Its expression is

Ls−l = −
∫

dµÄ P
∫ ∞

0
dω

Ä

ω2−Ä2
Gi j (ω)

{
g(ω)

[
hi ,
[
h1

jÄ, ρ
]]

+ Ä

2

[
hi ,
[
h2

jÄ, ρ
]
+
]}
.
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The second term is of orderε2r 2/ l 3, which is fairly small. However, the first
term will provide a significant contribution of orderε2r/ l 2[ln(l/r )+ 1]. This log-
arithmic dependence on the relative scale is indeed characteristic of the Lamb
shift (Gardiner, 1991; Itzykson and Zuber, 1985). As we have argued the func-
tion g(ω) must be fairly flat in the whole range of frequencies up to the cutoff
1/r and be of order 1/r in order to reproduce the appropriate correlationsci j (τ ).
A thermal bath, for instance, produces a functiong(ω) with the desired charac-
teristics, at least at the level of approximation that we are considering. In this
specific case, it can be seen that the logarithmic contribution to the energy shift
is not present and it would only appear in the zero temperature limit. However,
since we are modeling spacetime foam with this thermal bath, the effective tem-
perature is 1/r , which is close to Planck scale and certainly far from zero. From
the practical point of view, the presence or not of this logarithmic contribution
is at most an order of magnitude larger than the standard one and, therefore,
it does not significantly affect the results. Almost any other state of the bath
with a more or less uniform frequency distribution will contain such logarithmic
contribution.

As a summary, thef term provides a dissipation part, necessary for the preser-
vation of commutators, and a fairly small contribution to what can be interpreted
as a gravitational Lamb shift. On the other hand, thec term gives rise to a diffusion
term and a shift in the oscillation frequencies of the low-energy fields that can be
interpreted as a mixture of a gravitational Stark effect and a Lamb shift. The size
of these effects, compared with the bare evolution, are the following: the diffusion
term is of orderε2; the damping term is smaller by a factorr/ l , and the combined
effect of the Stark and Lamb shifts is of order (r/ l )[ln(l/r )+ 1] as compared
with the diffusion term. Note that the quantum effects induced by spacetime foam
become relevant as the low-energy length scalel decreases, as we see from the
fact that these effects depend on the ratior/ l , while, in this situation, the diffusion
process becomes faster, except for the mass of scalars, which always decoheres in
a time scale that is close to the low-energy evolution time.

4. CONCLUSIONS

In our study of the evolution of quantum systems according to real clocks,
which are necessarily subject to errors, we have first established a stochastic char-
acterization of good real clocks. Using this description, we have derived a master
equation for the quantum evolution in real clock time and we have also found
its general solution on the basis of energy eigenstates. The stochastic features of
good real clocks and their effects on the quantum evolution can be equivalently
described by means of interactions that are nonlocal in time. They can also be
effectively modeled by a quantum thermal bath. The master equation exhibits a
diffusion term, which is responsible for the loss of coherence of most initial states.
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Finally, we have analyzed the evolution of classical systems according to real
clocks and reached analogous conclusions.

The third law of thermodynamics and the quantum fluctuations prevent real
clocks from being perfectly accurate. This suggests that, strictly speaking, the
Schrödinger unitary evolution equation is just an excellent approximation valid
for sufficiently short periods of time and that should be substituted, along the lines
proposed in this paper, by a diffusive master equation in more general situations.
This adds a random aspect to the evolution of quantum systems. Indeed, coherence
is progressively lost until we reach the period of applicability of the clock and,
after that time, unpredictability sets in, as we have seen. Even perfectly isolated
systems will suffer loss of coherence because of the fluctuations of the real clock
and will appear as effectively coupled to a reservoir.

Quantum fluctuations of the gravitational field on the other hand may well
give rise to the existence of a minimum length in the Planck scale. This can
be seen, for instance, by making use of the fact that measurements and vacuum
fluctuations of the gravitational field are extended both in space and time and can
therefore be treated with the techniques employed for continuous measurements,
in particular the action uncertainty principle (Mensky, 1992). The existence of this
resolution limit spoils the metric structure of spacetime at the Planck scales and
opens a doorway to nontrivial topologies, which will not only contribute to the path
integral formulation but will also dominate the Planck scale physics thus endowing
spacetime with a foam-like structure with very complicated topology. Indeed, at
the Planck scale, both the partition function and the density of topologies seem to
receive the dominant contribution from topological configurations with very high
Betti numbers (Carlip, 1998; Hawking, 1978).

Spacetime foam may leave its imprint in the low-energy physics and it seems
to induce loss of coherence in the low-energy quantum fields that propagate on it
as well as mode-dependent energy shifts. In order to study some of these effects in
more detail, we have built an effective theory in which spacetime foam has been
substituted by a fixed classical background plus nonlocal interactions between the
low-energy fields confined to bounded spacetime regions of nearly Planck size.
In the weak-coupling approximation, these nonlocal interactions become bilocal.
The low-energy evolution is nonunitary because of the absence of a nonvanishing
time-like Hamiltonian vector field. The nonunitarity of the bilocal interaction can
be encoded in a quantum noise source locally coupled to the low-energy fields.
From the form of the influence functional that accounts for the interaction with
spacetime foam, we have derived a master equation for the evolution of the low-
energy fields, which contains a diffusion term, a damping term, and energy shifts
that can be interpreted as gravitational Lamb and Stark effects.

As we have seen, there exist strong similarities between the evolution in
spacetime foam and that in quantum mechanics with real clocks. In both cases, the
fluctuations are described statistically and induce loss of coherence. However, there
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are some major differences. In the case of real clocks, the diffusion term contains
only the Hamiltonian of the system while, in the spacetime foam analysis, a plethora
of interactions appeared. Closely related to this, fluctuations of the real clock affect
in very similar ways to both classical and quantum evolution; this is not the case in
spacetime foam. The origin of these differences is the nature of the fluctuations that
we are considering and, more specifically, the existence or not of horizons. Indeed,
when studying real clocks, we have ensured that they satisfied Galilean causality,
i.e., that the real-time parameter always grows as compared with the ideal time,
so that no closed time-like curves are allowed in Galilean spacetime, whichever
clock we are using. This requirement is in sharp contrast with the situation that we
find in spacetime foam, where we have to consider topological fluctuations that
contain horizons (virtual black holes, time machines, etc.). Scattering processes in
a spacetime with horizons are necessarily of quantum nature. A classical scattering
process in the presence of these horizons would inevitably lead to loss of probability
because of the particles that would fall inside the horizons and would never come
out to the asymptotic region.

In other words, the underlying dynamics is completely different in both cases.
Spacetime foam provides a non-Hamiltonian dynamics since the underlying mani-
fold is not globally hyperbolic. On the other hand, in the case of quantum mechan-
ics according to clocks subject to small errors, the underlying evolution is purely
Hamiltonian, although the effective one is an average over all possible Hamiltonian
evolutions and becomes nonunitary.
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